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Abstract

This report documents the Phase 1 results of an effort aimed at formally verifying a key

hardware component, called Scoreboard, of the Fault Tolerant Parallel Processor (FTPP)

being built at Charles Stark Draper Laboratory (CSDL). The Scoreboard is part of the

FTPP virtual bus that guarantees reliable communication between processors in the presence

of Byzantine faults in the system. The Scoreboard implements a piece of control logic that

approves and validates a message before it can be transmitted. The goal of phase 1 was to

lay the foundation for the Scoreboard verification. We developed formal specifications of the

functional requirements and a high-level design of the Scoreboard. We used a preliminary

Scoreboard design developed at CSDL as a basis for developing our hardware design. We

proved a main correctness theorem for the Scoreboard design from which the functional

requirements can be established as corollaries, The goal of Phase 2 is to verify CSDL's

final detailed design of the Scoreboard. This task is being conducted as part of a NASA-

sponsored effort to explore integration of formal methods in the development cycle of current

fault-tolerant computer architectures being built in the aerospace industry.

Keywords: formal requirements specification, fault tolerant parallel computer, Byzantine

resilience, computer-aided hardware verification, theorem prover-based verification.
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1 Introduction

Formal verification is a method of validating computer designs and programs by applying

symbolic logic techniques. Hardware verification is formal verification applied to the vali-

dation of hardware designs. To formally verify a design, one specifies the design and the

requirements that the design is expected to satisfy in a formal logical notation. Then, one

constructs a formal proof that the design meets the stated requirements. To construct a

proof, one needs to use a system for symbolic manipulation, such as a theorem prover, that

manipulates expressions belonging to the logic used in the specifications.

The advantage of formal verification over traditional validation methods, such as

simulation and testing, is that formal verification gives total test coverage for the verified

property. When one constructs a formal proof of a property, the property is shown to hold

for all permissible inputs and initial conditions of a design. Of course, there is no guarantee

that the requirements specification with respect to which the design is verified is what one

wants. But, formal verification brings potential errors in a design into sharper focus by

subjecting the design to more intense scrutiny than is possible in simulation. The process of

formal verification is, in general, labor intensive. But, there are certain application domains,

such as digital hardware, where recent experience [13, 7, 4] suggests that the technology is

applicable to industry-scale designs, and certain application areas, such as safety-critical and

mission-critical systems, where the advantages of formal verification outweigh its cost.

NASA Langley Research Center has recently initiated a concerted effort [3] involving

several organizations, including ORA Corporation, to study the use of formal verification as

a possible validation technology for fault-tolerant digital flight-control systems in an applica-

tion area that requires ultra-high reliability and availability. The first step in this effort was

concerned with demonstrating the application of formal verification to key design problems

in this area. Some of the significant case studies that were completed as part of the first step

are formal verification of a clock synchronization algorithm framework [11], an interactive

consistency algorithm [1], and a Byzantine-resilient microprocessor system [15].

One of the goals of the second step of the NASA effort is to explore the integration of

formal methods into the design and verification of key components of current fault-tolerant

architectures being built in the aerospace industry. Toward this goal, ORA is currently

teamed with Charles Stark Draper Laboratory (CSDL), which is one of the organizations in

the forefront of building fault-tolerant systems for safety-critical applications. As part of a



NASA/Army-sponsored project, calledArmy Fault-Tolerant Architecture (AFTA), CSDL is

developingthe Fault-Tolerant Parallel Processor(FTPP). One of ORA's current tasks is to

formally specify and verify a key component, called Scoreboard, of FTPP. The Scoreboard

is part of the FTPP virtual bus that guarantees reliable communication between processors

in the presence of physical faults in the system. The virtual bus design is based on a

conservative fault model, called the Byzantine fault model, in which a faulty component

can exhibit arbitrary and malicious behavior. The Scoreboard implements a piece of control

logic that approves and validates a message before it can be transmitted. The verification of

the Scoreboard is being performed in two phases. This report documents the results of the

Phase 1 effort.

Since the detailed design of the Scoreboard was still evolving at the time we started

out" task, our main objective in Phase 1 was to lay the foundation for the verification effort.

In Phase 2, we plan to verify the actual CSDL design using the foundation developed in

Phase 1. Specifically, the Phase 1 goals were the following:

.

2.

Understand the FTPP architecture and the role of the Scoreboard in FTPP.

Formulate a set of abstract requirements on the functional behavior of the Scoreboard.

The first two goals were accomplished in consultation with the personnel involved in

the development of FTPP.

3. Develop a high-level design for the Scoreboard based on the initial design provided by

CSDL and formally specify the design.

4. Formally verify that our Scoreboard design satisfies some of the stated functional re-

quirements.

1.1 Overview of Results

We summarize the Phase 1 accomplishments below.

Requirements Specification: We developed a formal specification of the functional require-

ments for the Scoreboard in two forms. The constraints form describes the functional

requirements as a set of constraints on the actual behavior of the Scoreboard. The

functional form defines the expected behavior of the main operation of the Scoreboard
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by meansof a function that mapsthe initial stateof the Scoreboardto its final state and

the sequenceof all outputs producedduring the executionof the operation. Sincethe

behavior of the Scoreboardis inherently procedural, the functional form of specifica-

tion is involved and not asdeclarativeasonemight prefer a requirementsspecification

to be. The constraints form is moredeclarativeand easierto read.

Design Specification: We developed a synchronous block level hardware design for the Score-

board and a formal specification of the design. The Scoreboard design is structured

as a finite state machine controller and a set of component blocks that are controlled

by the controller. Most of the components are at the level of registers; three of the

blocks are substantially more complex than a register and support multiple operations.

Our design was based on the algorithmic specification and the VHDL behavioral de-

scription of the Scoreboard given in Morton's Master's thesis [9]. We constructed the

Scoreboard design and its specification using Spectool, a hardware design verification

tool developed at ORA. The design specification defines the behavior of the design for

a single clock cycle.

Verification: We mechanically proved a main lemma (Msglemma) that establishes a correct-

ness relationship between the design specification and the second form of the require-

ments specification. The assertions defined in the constraints form of the requirements

specification can be proved as corollaries from a stronger version of Nsglemma. The

requirements expressed in the constraints form were not verified in Phase 1. To decom-

pose the proof of Msglemma into smaller and more manageable parts, we introduced

two additional levels of specification--step level and macro step level-- between the

design specification and the requirements specification. The step and the macro step

levels describe the behavior of the Scoreboard over longer periods of time than the

design specification. We proved Nsglemma with the help of several other lemmas that

relate the various levels in the specification hierarchy. We also proved all the helping

lemmas used in the proof of Nsglemma.

1.2 Organization of the Report

This report assumes that the reader has a basic understanding of the issues involved in the

design of Byzantine-resilient architectures. It also assumes some familiarity with the steps

involved in a formal verification process and a functional style of specification.



The report is organizedasfollows. The next section briefly describesthe tools used

in the verification effort. Section 3 givesan overviewof FTPP and the role of the Score-

board in the FTPP design. Section4 gives the functional requirementsspecification of the

Scoreboard. Section 5 describesthe Scoreboarddesign and its specification generatedby

Spectool. Section6 describesthe hierarchyof specificationand Iemmasusedin the proof of

Msglemma.Section 7 summarizesthe techniquesthat wereused to prove the major lemmas

in the verification. The last sectiongivesour concludingremarks.

2 The Verification Tools Used

In this effort, we used two verification tools, Spectool [12] and Clio [2], both of which were

developed at ORA. These tools are summarized in the following subsections. A detailed

description of Spectool is given in [14] and that of Clio is given in [2].

2.1 Spectool Summary

Spectool is a computer-aided verification tool targeted for synchronous hardware designs

described at a level of representation that is comparable to the register-transfer level of

hardware. The tool reduces the effort required for verifying using Clio a design in the targeted

class by automating most of the routine, but cumbersome, parts of the verification process.

We designed Spectool based on our experience in using Clio to verify several hardware

designs, the largest of which was the MiniCayuga processor design.

Spectool provides a window-based graphical user interface that the designer uses

to draw a circuit diagram of a hardware design. The designer then annotates the circuit

diagram with various pieces of useful information; for example, one piece of information is

a set of conditions that are expected to hold at specified points during the operation of the

circuit. The tool uses the annotated circuit diagram to automatically generate specification

and verification conditions for the circuit. Spectool aids construction of the proof for the

conditions by generating a set of control annotations for the prover. The control annotations

assist in constructing a prooffora class of verification conditions either automatically or

by applying a standard proof strategy. The class of circuit properties targeted by Spectool

denote conditions that relate the states of a circuit that are a fixed (not indefinite) distance
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apart in time. The tool providesa facility that the designercan use to display the results

of the prover in terms of the symbolsand conceptsintroduced by the designerat the circuit

diagram level.

2.2 Clio Summary

Clio is a system for proving properties about programs written in an executable functional

language, Caliban. Caliban is a higher order, polymorphic, lazy functional language similar

to Miranda 1. A property to be proved is expressed in the Clio assertion language as an

arbitrary first-order predicate calculus formula built from atomic literals. An atomic literal

is an equation on Caliban expressions. An equation is interpreted to be true if and only if

the two expressions in the equation have the same meaning in a domain theoretic semantics

defined for Caliban. The first-order formulas have the classical interpretation. In the present

application, the specifications of the system and its components are expressed in Caliban.

The verification conditions to be proved are expressed in the assertion language.

The basic proof technique of the Clio prover is normalization, i.e., simplifying expres-

sions on the two sides of an equation to a common form to prove the equation. The prover

supports a set of proof tactics that are useful in conjunction with normalization to prove more

complex formulae. Some of the proof tactics available are ease analysis, structural induction,

fixpoint induction, and proof by contradiction. The user can use the prover in interactive or

automatic mode. In the interactive mode, Clio prompts the user with the available choices

in proof tactics, and the user makes the appropriate selection until Clio proves the formula

or discovers a contradiction. In the automatic mode, it makes the selection on its own, based

on a built-in strategy. The Clio prover is similar to the Boyer-Moore prover in its proving

style. The logic of Clio is more expressive than the Boyer-Moore logic because Clio supports

unrestricted quantification and higher order functions. It is possible to define and reason

about partial functions in Clio because of the lazy semantics of Caliban.

1Miranda is a trademark of Research Software Limited.
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Figure 1" The FTPP Logical Configuration

3 The Scoreboard and Its Environment

The Scoreboard is a key hardware component of the fault-tolerant system being built under

the Army Fault Tolerant Architecture (AFTA) project. The AFTA system, designed by

CSDL, combines the disciplines of Byzantine-resilient fault-tolerant computing and parallel

processing. Byzantine resilience design principles have been used to satisfy an ultra-high

reliabifity requirement, while parallel processing capability has been used to meet a high

throughput requirement on the system. A Byzantine-resilient system is one that is designed

to tolerate arbitrary and malicious faults on the part of the failed components. This type

of fault, known as a Byzantine fault, may include stopping and then restarting execution at

a future time and sending conflicting information to different destinations. In th e following

subsection, we give an overview of the AFTA hardware architecture and its main components.

The following overview is based on the detailed description of AFTA given in [5].

3.1 AFTA Hardware Architecture Overview

The hardware architecture of AFTA is based on the Fault Tolerant Parallel Processor [6],

also developed by CSDL. Figure 1 shows a logical view of the FTPP hardware architecture.

FTPP is composed of a set of Processing Elements (PE) that are interconnected by means

of a specially designed Byzantine-resilient virtual bus. The multiple processing elements are

used for parallel processing as well as for providing hardware redundancy for fault tolerance.

The PEs in the system are partitioned into a set of virtual groups (VCs), each of which may

contain one (simplex), three (triad) or four (quad) PEs. For example, the configuration shown



in Figure 1 consists of a quad (denoted by a group of squares), a triad (denoted by a group

of triangles), and several simplexes (denoted by circles). Virtual groups are logical views of

the processing resources capable of accepting work in parallel. When operating redundantly,

each processor within a virtual group executes tasks that are functionally congruent with the

other members in the group. Fault tolerance for a particular processing resource is ensured

by making the virtual group implementing the resource a triad or qua& The architecture is

capable of dynamically reconfiguring its ensemble of virtual groups.

The virtual bus is constructed as a fully connected ensemble of specially designed iden-

tical hardware components called network elements (NE). The NEs implement the inter-PE

communications and the redundancy management required by FTPP. A PE, which is a

processor with its own memory, just subscribes to a NE. The NEs are replicated because

Byzantine resilience requires that the hardware managing redundancy must itself be repli-

cated for fault tolerance. The virtual bus implemented by the group of network elements

provides a Byzantine-Resilient Virtual Circuit [5] communication abstraction that has the

characteristics enumerated below. These characteristics are guaranteed to hold even under

Byzantine faults as long as the number of faults in the system is bounded by an amount

determined by the redundancy levels of the PEs and the NEs.

1. Reliable delivery: Every virtual group that sends a message can expect delivery of the

message, assuming the recipient exists.

Order preservation: Messages sent by one group to another are delivered in the order

sent. Specifically, non-faulty members of the recipient group receive messages in the

order sent by the non-faulty members of the source group.

Group consensus:

• Each nonfaulty member of a group will receive identical copies of the message

delivered to the group.

• All non-faulty members of a recipient group receive messages in identical order.

4. Synchronous operation: The absolute times of arrival of corresponding messages at the

members of a recipient group differ by less than a known upper bound $.

.

.

Figure 2 shows the physical configuration of FTPP. The architecture contains four

NEs that are fully connected to each other via fiber-optic links. Each NE hosts up to eight
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Figure 2: FTPP Physical Configuration

PEs, each of which is a standard processor with a local memory. Each PE communicates

with the hosting NE via a standard bus, such as VME. Each NE and the associated PEs

comprise a fault containment region (FCR) satisfying the requirements for fault containment,

namely electrical isolation, physical isolation, independent power, and independent clocking.

The physical configuration is arranged so that the redundant PEs belonging to the

same virtual group reside in different FCRs and, hence, are hosted by different NEs. That

is, every PE hosted by an NE belongs to a distinct virtual group. Note that an NE does

not necessarily host a PE from every virtual group in the system because the redundancy

levels of virtual groups can vary between one and four. Every virtual group in the system is

assigned a unique identifier called the virtual group identifier (VID). Every NE maintains a

configuration table (CT) that gives the physical identifier (PID) of the PEs belonging to every
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VID in the system. The PID of a PE is constructed from the unique identifier assigned to the

NE to which the PE is connected and the port number through which the PE is connected to

the NE. The physical configuration shown in Figure 2 corresponds to the logical organization

shown in Figure 1. A sample configuration table that relates the two configurations is shown

in Figure 3.

As mentioned earlier, one of the main functions of the NE is to pick up and deliver

messages among the members (PEs) of virtual groups. To satisfy the requirements of fault

tolerance, the NE hardware itself is replicated among the fault containment regions. To

ensure congruent data exchange among the members of a virtual group, the NEs themselves

must come to a consensus regarding data originating from and destined to the virtual groups

and their members. There are special protocols, called Byzantine agreement (or interactive

consistency) protocols [10], for a set of computing resources to come to a consensus about

data private to each of the resources in the presence of Byzantine faults. Each of the NEs

employs such a protocol in its implementation of the communication abstraction.

An interactive consistency protocol involves two phases: a message exchange phase,

in which the computing resources exchange their private data among themselves, and a

voting phase, in which the NEs perform a majority vote on the exchanged copies to arrive

at a consensus. Using a majority vote effectively masks the faulty data. The information on

which a consensus is sought can be of two basic categories: group information or single source

information. Group information is expected to be identical for every replicated resource.

Single source information can be different for each of the resources. For group data, a single

round of exchange of data among the resources is sufficient to arrive at a consensus. For



singlesourcedata, however,multiple rounds of exchangeare required to ensurethat every
resourceaccumulatesasufficientnumberof reliable copies of the single source data associated

with every other processor before a majority vote is performed. For example, with four NEs,

a single source data consensus requires two rounds of exchanges.

3.2 The Network Element

Operation of the NEs is synchronous and cyclic. A basic cycle, shown in Figure 4, comprises

two or more frames, where a frame is a period in which all NEs perform a similar (or identical)

task. The task performed in a frame may involve all NEs synchronously broadcasting a

message to one another.

In the first frame, each NE compiles the message exchange requests originating from

all the PEs in the system. This compilation is done in two steps. First, every NE polls

each of its own PEs to compile a Local Exchange Request Pattern (LERP). Then, the NEs

exchange the LERPs among themselves to compile a consistent record of the system-wide

exchange requests, namely the System Exchange Request Pattern (SERP). Since the LERP

is different for each NE, it is necessary to arrive at a Byzantine-resilient consensus on the

SERP. Hence, the second step involves a two-round interactive consistency exchange of the

LERPs among the NEs.

In the second frame, each NE subjects the SERP to a message approval test to decide

which, if any, of the messages must be transmitted. Each NE arrives at the same decision

because each executes the same hardwired decision logic on identical input, namely, the con-

sistent SERP. The hardware inside each of the NEs that implements the message approval

lo_ic is called the Scoreboard.

In subsequent frames of the cycle, each of the NEs sends all the approved messages to

their respective destinations one at a time. The messages exchanged by virtual groups are

of two basic categories" group messages and single source messages. A group message is sent

by all members of a redundant group. This category of message is employed only when exact

consensus regarding the message to be sent is expected amongst all the nonfaulty members

of the sending group. A single source message is originated by a simplex PE or by a single

member of a redundant group requiring PE-specific exchange of information, such as a local

clock. For either category, the message transmission protocol employed by the NEs ensures

10
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that all the nonfaulty members of the destination group receive congruent data, i.e., bitwise

identical data. To transmit a group message, each NE exchanges its copy of the message

with every other NE, computes a bitwise majority vote on the exchanged copies to create

a unique voted copy, and delivers the voted copy to the destination. To transmit a single

source message, the NEs perform two rounds of exchange of this message.

3.3 The Scoreboard

A message exchange request for a PE is essentially a record of the status of the output

and input buffers of the PE through which the PE exchanges a message with the NE. The

status includes whether the processor has room in its input buffer to receive a message

(the input buffer not full, or IBNF, condition) and whether it has a message to send in its

out buffer (the output buffer not empty, or OBNE, condition). If the latter is true, the

destination VID of the message and a user-defined byte are also included. The user-defined

byte includes information regarding the category of the message to be exchanged. The SERP

is an aggregate of the buffer status polls of all the PEs in the system.

The Scoreboard uses a virtual-group-to-physical-processor mapping to extract the

buffer status information from the SERP on a VG=by-VG basis. Then, it votes the individual

buffer status bits contained in the SERP for all members of a VG to determine the overall

status of the VG. The Scoreboard approves messages originating from a group only if the

following conditions hold.

1. A majority or all the members of the members of the source group are "ready" to send

a message. APE is ready to send a message if its OBNE condition is true.

11



2. A majority or all the members of the members of the destination group are "ready" to

receive a message. APE is ready to receive a message if its IBNF condition is true.

3. The message satisfies a set of "validity" conditions.

Under some conditions, however, a message from a VG will not be approved even if

the above conditions are met. The first exception arises when there is no unanimity on the

OBNE (or IBNF) condition for a VID. One of the reasons for lack of unanimity on the OBNE

(or IBNF) condition among the members of a group is that some members may be faulty. A

possible action that the Scoreboard can take in this case, provided there is at least a majority,

is to approve the message and mark the non-agreeing members as faulty. Often, however,

the cause for lack of unanimity is that some of the processors are out of synchrony with the

others. Note that the PEs belonging to a group, being in different FCRs, are operated by

physically distinct clocks. So it is useful to delay the approval of a message, even when there

is a majority agreement on the OBNE (or IBNF) conditions for a group, with the goal of

tightening the synchrony among the processors. The Scoreboard uses a timeout mechanism

to accomplish this goal. When a majority, but not all, of the members are ready to send a

message, the Scoreboard starts a timeout for the group, provided a timeout is not already

set for the group. The Scoreboard may approve such a message in one of the following NE

cycles when the timeout expires or a unanimity is reached.

The Scoreboard makes exception to the approval conditions listed above in two other

situations. First, once the Scoreboard approves a message to a destination, it does not

approve any additional messages to that destination. The motivation for this decision is

that the logic determining the IBNF condition has the logical effect of limiting the length of

the input buffers of the PEs to one. Hence, once a message is sent to a PE, its buffer will

become full. The second exception arises when dealing with a broadcast message. Since a

broadcast message is sent to every virtual group in the system, it can be approved only if

the IBNF condition is true for all the groups. A broadcast message takes precedence over

ordinary messages. So, once a broadcast message is encountered, no other message will be

approved until the broadcast message is approved.

12



4 Functional Requirements Specifications

Technically, formal verification consists of showing that a certain desired correspondence

holds between two formal elaborations--specification and implementation--describing the

same object at two different levels. In the context of hardware verification, the imple-

mentation usually describes the hardware design at a certain level of representation. The

specification may be a complete description of the expected behavior of the design at a higher

level or a description of a set of constraints, such as the desired functional requirements, on

the behavior of the design. The value of verification in assuring the correctness of a design

critically depends on the correctness of the specification. Some of the qualities desirable in

a specification are the following.

• Abstractness: A specification must be as implementation independent as possible.

• Clarity: A specification must be clear and concise.

• Completeness: A specification must describe the requirements as completely as possi-

ble.

Our starting point for formulating a specification for the Scoreboard was the mas-

ter's thesis [9] by Dennis Morton on using the hardware description language VHDL [8] for

designing the Scoreboard. The thesis describes the functionality of the Scoreboard using

a combination of English and traditional flowcharts. The description given in the thesis

is an algorithmic implementation of the Scoreboard. We wanted to construct a more ab-

stract and declarative specification for the Scoreboard. Our requirements specification for

the Scoreboard is described below. We formulated an initial version of the specification by

going through a process of reverse engineering based on the algorithmic description given in

[9] and a description [5] of the context in which the Scoreboard is used. The final version

was produced by updating and revising the initial version after a discussion with the CSDL

engineering team.

In the following, the Scoreboard is viewed as a black box, shown in Figure 5, that

takes commands from the rest of the NE to execute one o_" a set of possible operations:

clear_timeout, Update_CT, and process_new_serp. The internal state of the Scoreboard

implementation is hidden in the abstract view except for certain essential parts that are

13
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necessary to completely specify the effect of a single invocation of the operations. The

Scoreboard state at this level consists of the following iterrisi ': :

• A timeout memory (tmo), which records the information necessary to implement the

timeout mechanism of the Scoreboard. The tmo contains the following information for

every valid VID in the system.

1. Whether a timeout is set for the OBNE condition; if so, the time at which the

timeout expires.

2. Whether a timeout is set for the IBNF condition; if so, the time at which the

timeout expires.

• A broadcast pending bit (bpndng), which indicates whether the Scoreboard is waiting

to approve a broadcast message.

The source VID (bsrc) of the broadcast message, when a broadcast is pending.

A free running timer (timer) that counts the number of clock cycles elapsed during

the operation of the Scoreboard; the value of this counter is used to set and check

timeouts.

The Scoreboard indicates its internal status during the execution of an operation by

means of a signal on the output line Status. The signal may take one of the following values:

idle, busy, message_to_send. A new operation must be initiated on the Scoreboard only
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when Status is idle. Upon initiation of an operation, Status becomes busy and reverts to

idle when the operation is completed.

The operations clear_timeout and Update_CT reset parts of the internal state of

the Scoreboard. The operation clear_timeout clears the timeout settings for a VID in the

timeout memory tmo. Update_CT initializes an internal table that the Scoreboard maintains

to process the SERP. Update_CT must be invoked every time the CT is updated by the

rest of the Network Element to keep the internal table consistent with the current state of

the CT. In this report, we focus on the specification and verification of processing a new

SERP. In our verification, we assume that the Scoreboard is initialized appropriately using

the clear_timeout and Update_CT operations.

Process_new_serp is the operation that initiates a new SERP processing cycle on

the Scoreboard. This operation produces a sequence of approved messages on the msgs line.

Every time a new message is produced, the Scoreboard puts out the message_to_send signal

on the Status line. The Scoreboard holds the msgs and the Status lines constant for at

least one cycle and until it receives a continue signal on the opin line. Upon receiving a

continue, the Scoreboard starts to compute the next message, which is indicated by Status

becoming busy. Only when all the messages for the current SERP cycle have been sent out

does the Status line become idle.

The most important parts of the behavior of the Scoreboard operation over a single

SERP cycle are (1) the list of messages produced by the Scoreboard and (2) the new values

for the items in the Scoreboard state. We define these two parts of the Scoreboard behavior

at two different levels:

• Actual behavior=. In terms of a trace of the Scoreboard design. A trace is a sequence of

values that the state and outputs of the Scoreboard take on over time during a SERP

cycle.

• Expected behavior:. As a function of the inputs (i.e., SERP, CT, etc.) and the initial

state of the Scoreboard.

The requirements specification states a desired relation between the actual and ex-

pected behaviors. We developed a formal specification of the functional requirements for

the Scoreboard in two forms. The constraints form (Section 4.3) describes the functional

requirements as a set of constraints on the actual behavior of the Scoreboard. The functional
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form (Section 4.2) defines the expected behavior of the main operation of the Scoreboard by

means of a function that maps the initial state of the Scoreboard to its final state and the

sequence of all outputs produced during the execution of the operation. Since the behavior of

tile Scoreboard is inherently procedural, the functional form of specification is involved and

not as declarative as one might prefer a requirements specification to be. The constraints

form is more declarative and easier to read.

Before we present the requirements specification, we briefly describe how the actual

behavior is specified in Caliban to motivate the form in which our requirements specification

is expressed.

4.1 Specification of the Actual Behavior

We specified the actual behavior by means of two functions that extract the desired items

by generating a Scoreboard trace as shown in Figure 6. ApprovedMsgs defines the list of

approved messages produced during a SERP cycle, and FinalState defines the state of

the Scoreboard at the end of a SERP cycle. A Scoreboard trace is generated by a repeated

application of the function Step to a given initial Scoreboard state. Step defines the behavior

of the Scoreboard at a certain level of time abstraction that comprises multiple clock cycles.

The Step level is not our lowest level of specification of the Scoreboard. The Execute level

(described in Section 5) specifies the structural details and the single clock cycle behavior

of the Scoreboard design. Section 6 describes the entire hierarchy of specification levels and

how they are related.
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Note that a single SERP processing cycle of the Scoreboard involves multiple clock

cycles starting and ending in an idle state, i.e., a state in which the Status output is idle

(marked I in Figure 6) and ends in an idle state. A message is picked up by the environment

of the Scoreboard every time the Scoreboard moves from a message_to_send state (marked

H in Figure 6) to one in which there is no message_to_send.

A Caliban specification of the actual behavior of the Scoreboard is given below. Most

of the functions defined below operate on a Scoreboard state s, which includes not only the

internal state of the Scoreboard but also its inputs, including the CT and SERP, and the

outputs. The function ActualBehavior defines the actual behavior as a tuple (denoted by

<< >> in Caliban) of the list of approved messages and the final state. The function trui

(for trace-until-idle) generates a multi-step trace of the Scoreboard by applying Step to an

initial state an arbitrary number of times until it encounters an idle state. The trace, which

is represented as a list in Caliban, will be potentially infinite if the SERP cycle does not

terminate. The lazy (or nonstrict) semantics of Caliban allows one to define such potentially

infinite behaviors succinctly and even reason about them. For example, we can prove that a

SERP processing cycle terminates by showing that the trace is finite.

MsgOut extracts the list of approved messages from the trace by checking every time

the Scoreboard makes a transition from a state where there is a message_to_send to one

where there is no message_to_send on the Status line. Final extracts the internal state

of the Scoreboard from the last element of the trace. Both these functions are defined

recursively on lists ([] denotes the empty list and (hd:tail) denotes a nonempty list with

hd as the head and tail as the tail).

ActualBehavior s = <<ApprovedMsgs s, FinalState s>>

ApprovedMsgs s = Msg0ut (trui (Step s))

FinalState s = Final (trui (Step s))

trui s = [s], is_idle s

s : trui (Step s)

MsgOut [] = []

MsgOut Is] = []

MsgOut (sl:s2:more) {is_send sl _ -(is_send s2)} =
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ABS_msgofsl : MsgOutmore

MsgOut (sl:s2:more) = MsgOut (s2:more)

Final [s] = s

Final (a:x) = Final x

4.2 Requirements Specification: Functional Form

In the functional form of the requirements specification, the expected behavior is specified as

a function (ExpBehavior) of the CT, SERP, and the part of the initial state of the Scoreboard

that is included in the abstract view of the Scoreboard shown in Figure 5. A definition of

this function is described in detail in Section 6.5. Below, we provide a formalization of the

requirements specification in functional form in terms of ExpBehavior.

The requirements specification is expressed as one or more statements in the Clio

assertion language. Any statement that is proved in Clio has to be expressed in the Clio

assertion language. The Clio assertion language includes all well-formed sentences from first-

order predicate calculus. The atomic literals from which the sentences may be constructed

include equations relating two arbitrary terms that may involve functions defined in Caliban.

An equation in the Clio assertion language over two Caliban terms el and e2 is denoted

as 'el' = re2'. The back quotes are used to distinguish the Caliban expressions from

the assertion language expressions. A formula in the assertion language may be quantified,

existentially or universally, over variables appearing in the Caliban expressions. The default

quantification is universal.

'ActualBehavior s' = 'ExpBehavior s', Liveness 's'

Liveness 's' :=

(t) "(NextContinue. t s)' = 'True', '!t'='True'

For example, the first sentence given above states that "for all s ranging over the

Scoreboard state, the actual behavior is equal to the expected behavior provided a precon,

dition defined by the predicate Liveness holds for s." The comma separates the conclusion

of an implication from the precondition. The next line defines the Liveness predicate, the

--%
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purposeof which is explainedbelow. Although ExpBehavior operateson the entire Score-

board state, the function dependsonly the CT, SERP, and the parts that are included in

the abstract view of the Scoreboard(Figure 5).

For a SERPprocessingcycle to completesuccessfully,a cent inue signalmust appear

a sufficient number of times on the opin input line. The predicateLiveness ensuresthis

condition. The predicate expressesa constraint on the input stream, which is included as

part of the state s. The predicate requiresthat the input stream, which is representedasa

function from time to the valuesof the opin input, have an infinite, i.e., an arbitrarily large,

number of continues. (NextContinue t s) returns the earliest instant after time t when

a continue appears in the input stream. The built-in Caliban function ! is true only if its

argument is well defined. Thus, as long as (NextContinue t s) is well defined for all time,

the input stream is guaranteed to contain an arbitrary number of continues.

4.3 Requirements Specification: Constraints Form

A complete definition of the expected behavior as a single function is involved because the

Scoreboard behavior is inherently procedural, especially if the time used to set and clear

timeouts is based on a free running timer instead of the time at the beginning of a SERP

cycle. A definition of the function ExpBehavior can be hard to read. In the constraints form,

we express the requirements specification as a set of properties that the actual behavior of

the Scoreboard must satisfy. A property either expresses a constraint on the actual behavior

or relates a piece of the actual behavior to a corresponding piece of the expected behavior.

In this style of specification, it is not necessary to define the expected behavior as a single

function.

Every property described in the following sections is true only if a set of preconditions

is true. Rather than list the preconditions in the statement of every property, we list them

below once.

• InitialCond: This precondition is a predicate on the initial state of the Scoreboard

that must be true for a SERP processing to begin properly. It assumes that the internal

state of the Scoreboard is well defined and its internal tables are properly initialized

by the resetting operations.

• Liveness: This precondition was described earlier. The actual behavior will not cor-
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respond to the expectedbehavior unlessthe rest of the NE cooperateswith the Score-
board.

isvalidvid: Most of the properties stated below are universally quantified over all

possible VID numbers. The quantification over VIDs is actually only over all valid

VIDs in the system. (AVID is valid if it is the identifier of an existing virtual group.)

Hence, every such property is assumed to have a precondition isvalidvid over the

quantified VID variable.

We classify the properties into five groups, where every group characterizes a certain

aspect of the Scoreboard behavior.

4.3.1 Guaranteed Operation Completion

The following properties assert that once an operation is initiated on the Scoreboard it must

complete. In the case of clear_timeout and Update_CT, no external intervention is needed

for a successful completion of an operation. For process_new_serp to complete successfully,

a continue signal must appear a sufficient number of times on the opin input line. The

predicate Finite asserts that its trace argument must be finite.

Finite 'trui (Step s)', ( 'opinof s

i'opinof s

c = 'clear_timeout'

' = 'Update_CT' )

Finite 'trui (Step s)', ( 'opinof s' = Cprocess_new_serp'

& Liveness 's')

4.3.2 Constraints on the Sequence of Messages

The first constraint specifies that the VIDs must be processed by the Scoreboard in increasing

order of VIDs. We believe this requirement is not strictly necessary to implement the goal

of the network element. It is important, however, that the Scoreboard process the VIDs

in some systematic order. We have included the first constraint since it was given to us as

a requirement by CSDL, although other orders of processing the VIDSI eg., a round-robin

order, might be better to ensure that a message originating from a virtual group is not
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ignored arbitrarily long. The second and the third requirements stated below ensure that a

broadcast message receives precedence over ordinary messages in getting approved.

1. Messages must be approved in increasing order of source VIDs.

(In the following, ## returns the length of a list, (ithof m rasgs) returns the rn th

message in the list rasgs.)

IsSrcvidOrdered 'ApprovedMsgs s', Liveness 's'

IsSrcvidOrdered 'msgs' :=

(n)(m) 'srcvidof (ithof n msgs)

> srcvidof (ithof m msgs)' u 'True'

'n > m _ n <= ## msgs

& m <= ## msgs' = 'True'

2. At most one message will be approved, if a broadcast message is pending at the start.

(In the following, #1 is a literal that denotes the natural number one.)

'(## (ApprovedMsgs s) <= #I' = True',

'Isbrdcstpndng s' = 'True'

3. If there is a broadcast message in the messages approved,

then it must be the last message approved.

(In the following, all computes the conjunction of all the members of a list of boolean

values (returns true, if the list is empty); map applies a given function to every element

in a given list; and is_best checks whether a message is a broadcast message.)

'all (map (" is_bcst)

(AllButLastMsgs (ApprovedMsgs s)))' _ 'True',

'(## (ApprovedMsgs s)) > #I'

4. No two distinct messages among the approved messages may have the same destination.

DestnUnique 'ApprovedMsgs s'

DestnUnique 'msgs' :=

(n)(m) -('destnvidof (ithof n msgs) =

destnvidof (ithof m msgs)'), "('n = m')
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4.3.3 Message Approval Condition

A message from a source group v may be sent, i.e., may appear in the list of messages

produced by the Scoreboard, only if a set of general approval conditions is satisfied by the

entries associated with v in the SERP and the initial state of the timeout memory tmo. The

set of general approval conditions is also sufficient for approval provided the message is not

a broadcast and there is no broadcast message pending from the previous cycle. The first

constraint given below formalizes this requirement. If there is a broadcast message in the

present cycle or there is one pending from the previous cycle, then additional conditions

must be satisfied before the message can be approved. The second and third constraints

given below formalize the two broadcast processing situations.

First, we formalize the set of general approval conditions by means of the predicate

ApprovalCond, which is defined as a function of the SERP, CT, and the initial state of

the timeout memory tmo and timer. ApprovalCond does not check if a message is valid.

The validity condition is included as part of the correctness of the contents of an approved

message, described in the next section. Note that even if a message is invalid, the Scoreboard

will send the message out, with the destination set to "null," as long as the message satisfies

the approval condition.

A message with source VID (v) may be sent only if

the following general approval conditions hold for v:

(a) The voted OBNE for v must be true.

(b) The voted IBNF for the destination of v's message

must be true.

(c) The condition under which an OBNE timeout will be set or

retained must not hold for v.

(d) The condition under which an IBNF timeout will be set or

retained must not hold for the voted destination of v.

The functions 0BNEtimeoutcond and IBNFtimeoutcond define the timeout setting

conditions for OBNE and IBNF. Their definitions, which are given Section 4.3.5, are identical

except that one applies to OBNE and the other to IBNF. The meanings of the rest of the

functions used in the following definition should be self-explanatory.
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ApprovalCond 'tmo' 'timer' 'vid' 'serp' 'ct' :=

'0BNEtimeoutcond tmo timer vid serp ct' _ 'False'

'IBNFtimeoutcond tmo timer

(voteddstn vid serp ct) serp ct' = 'False'

'votedobne vid serp ct' = 'True'

& 'votedibnf

(voteddstn vid serp ct) vid serp ct' = 'True'

1. If no broadcast is pending and a message is not broadcast,

then a message must be sent iff the message satisfies

the general approval conditions.

In the following, the function bpndng extracts the bpndng part from the initial Score-

board state s; votedxclass returns the result of voting the exchange classes in the

SERP entries associated with rid. The meanings of the rest of the functions should

be self-explanatory.

(vid)(s)

(((En) 'srcvidof (ithof n (ApprovedMsgs s))' = 'vid')

<-> ApprovalCond 'tmoof s' 'timerof s' 'vidof s'

'serpof s' 'ctof s' ),

( 'bpndng s' = 'False'

a 'isbrdcst (votedxclass vid serp ct)' = 'False')

2. If a broadcast is pending from the previous cycle,

then there is a message approved in the present cycle iff

(a) the source VID of the message is the broadcast

source stored in the initial Scoreboard state, as well as

(b) the message satisfies the general approval condition and

(e) all the valid VIDs are ready to receive.

In the following, AllVidsReady defines the condition under which all the virtual groups

in the system are ready to receive a message. The function brdcstsrcof extracts the

bsrc part of the initial Scoreboard state.

AllVidsReady 'tmo' 'timer' 'vid' 'serp' 'ct' :=
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(vid) 'votedibnf

(voteddstn vid serp ct) rid serp ct' - 'True'

& 'IBNFtimeoutcond tmo timer

(voteddstn vid serp ct) serp ct' = 'False'

( 'bpndngof s' = 'True'

& '## (ApprovedMsgs s)' _= '#1')

-> ('srcvidof (ithof #I (ApprovedMsgs s))'

-- 'brdcstsrcof s') :

<-> ( ApprovalCond 'tmoofs' 'timerof s'

'vidof s' 'serpof s' 'ctof s'

& AllVidsReady ',moor s' 'timerof s'

'vidof s' 'serpof s' 'ctof s')

31 If there is no broadcast pending from the previous Cyc]e, ......

and if the message being sourced by a VID is a broadcast,

then the message may be approved iff the message satisfies

(a) the general approval condition, as well as

(b) all valid VIDs are ready to receive and

(c) this is the first broadcast message encountered.

NoEarlierBrdcst 'vid' 'serp' 'ct' :=

(vidl) ('rid > vidl' z 'True'

-> 'isbrdcst (votedxclass

vidl serp ct)' = 'False' )

(tmo)(timer)(vid)(serp)(ct)

((En) 'srcvidof (ithof n (ApprovedMsgs s))' = 'vid')

<-> ( Approva!Cond 'tmo' 'timer' 'rid' 'serp' 'ct'

& AllVidsReady 'tmo' 'timer' 'vid' 'serp' 'ct'

& NoEarlierBrdcst 'vidof s' 'serpof s' 'ctof s

......... ( 'bpndngof S _ = 'True'

a 'isbrdcst (votedxclass

vidl serp ct)' - 'False' )
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4.3.4 Correctness of Message Content

For every message that is approved by the Scoreboard, the following conditions must hold:

1. The destination of the message must be the voted destination, unless either the voted

destination or the voted exchange class is not valid; in the latter case, the destination

is a distinguished "null" value.

2. For every other field of the message, the actual value must be equal to the voted or

expected value.

ithmsgof i s = ±thof i (ApprovedMsgs s)

(vid)(serp)(ct)(n)

'srcvidof (ithmsgof n s))' = 'vid _)

-> 'votedmsgfor vid serp ct' = 'ithmsgof n s'

4.3.5 Correctness of Timeout Setting

In the following, we formalize the condition under which an OBNE or an IBNF timeout

must be set or cleared for a VID in the system. The timeout condition is defined as a

function of the initial state of the timeout memory trao, the timer, and the SERP and

CT entries associated with a VID. We define the timeout condition as a Caliban predicate

0BNEtimeoutcond, which applies for OBNE. The IBNF timeout condition can be defined in

a similar fashion.

For every valid VID,

a timeout must be set for its OBNE

at the end of a SERP cycle iff

the timeout condition holds for its OBNE.

(vid) 'OBNEtimeoutof vid (tmoof (Finalstate. s))'

= 'OBNEtimeoutcond (srcvidof s) (tmoof s)

(serpof s) (ctof s)'
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Timeout condition for OBNE holds iff

(a) OBNE timeout is not set for the VID at the start and

the timeout set condition holds for OBNE or

(b) OBNE timeout is set for the VID at the start and

the timeout clear condition does not hold for OBNE.

0BNEtimeoutcond vid tmo timer serp ct

-- (0BNEtimeoutof vid tmo)

-> - (DBNEtimeoutclear vid tmo timer serp ct);

(0BNEtimeoutset vid serp ct)

Timeout set condition holds for OBNE iff

the voted OBNE for the VID is true by a majority but not unanimous.

0BNEtimeoutset vid serp ct

= (voted0BNE vid serp ct) & (nonunanmaj0BNE vid serp ct)

Timeout clear condition holds for OBNE iff

the voted OBNE for the VID is unanimously true or

the voted OBNE for the VID is true by nonunanimous majority and

timeout expired condition holds for OBNE for the VID.

0BNEtimeoutclear vid tmo timer serp ct

= (voted0BNE vid serp ct)

( (unan0BNE vid serp ct)

I( (nonunanmaj0BNE vid serp ct) ....

& (0BNEexpired tmo timer ct vid)) )

Timeout expired condition is true iff

tchk _> te_p, where

tchk is the time when the timeout expiration check is made,

t,xp is the expiration value stored in tmo for theViD.
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OBNEexpired tmo timer ct vid

= (timer + (vidposition vid ct)

>= (OBNEexpval vid tmo)

+ 2)

The exact value of tchk for a VID in a SERP cycle is implementation-dependent

unless, for purposes of timeout calculations, time is considered to be frozen at the start of

a SERP cycle. Thus, one consequence of using a free running timer in the design is that a

precise characterization of the timeout condition becomes implementation dependent. For

our design, tchk is determined precisely by the position of the VID in the VID ordering. If

the timer is frozen, then tchk will be the value of timer in the initial state.

4.4 Discussion

During the course of the formal analysis, several questions about the Scoreboard function-

ality arose for which we were not able to get clear answers from the flowchart or English

descriptions given in Morton's dissertation [9]. Some of the questions arose during the con-

struction of the functional requirements specification. We clarified most of these questions by

discussing the initial version of the requirements with the Draper team. In the following, we

list the questions that arose during the verification process, for which we obtained answers

from CSDL after the verification was completed. Apparently, some of the questions helped

the CSDL team to shed new light on certain aspects of their design.

Question 1: Should the validity and approval condition of a pending broadcast message that

is sent out in a SERP cycle be checked and ensured explicitly by the Scoreboard?

In other words, can the validity of a pending broadcast message be assumed implicitly

by imposing a suitable precondition on the environment? The precondition to be imposed

is that the SERP entries associated with the source VID of the broadcast must not change

between two broadcast pending SERP cycles. If the Scoreboard does not have to guarantee

the validity on its own, then Property 2 in the message approval condition part of the

requirements specification (Section 4.3.3) can be weakened by including a precondition on

the current SERP. If the Scoreboard has to guarantee the validity even if the SERP can

change, then the Scoreboard must save the entire broadcast message for future use. We were

told by CSDL that the Scoreboard may assume that the pending message remains valid

across SERP cycles so the design does not have to explicitly check for this condition.
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Question. 2: Should an invalid broadcast message be sent?

When an ordinary message is invalid, the Scoreboard sends the message anyway, but

01113, after setting the destination of the message to "null." The question is, should the same

be done for a broadcast message? The message content correctness property (Section 4.3.4)

assumes that such "null" broadcast messages are sent. The C_o'3DLteam agreed that this was

a relevant question and that. there should be a message produced in such a situation.

Question 3: Can more than one message be sent to the "null" destination?

Based on the requirement that every invalid message that is approved must be sent

to a "null" destination, it appears that there have to _be multiple messages with "null"

destination in the output. The requirement that no two distinct messages may have the

same destination, which, presumably, does not include the "null" destination, applies only

to valid VIDs in the system. The CSDL team clarified that the Scoreboard should indeed

produce multiple "null" messages, although they are going to be discarded, because the

existence of a message gives useful information to the NE.

Question 4: Should the Scoreboard use a free running timer to set and check its timeouts or

just use the time at the beginning of the SERP cycle?

As we discussed earlier, the advantage of freezing the time for timeout calculation

purposes is that it enables developing a complete functional characterization of the behavior

(i.e., the sequence of messages approved) of a single SERP cycle in a design-independent

fashion. If a free running timer is used, the definition of the timeout expiration condition

(0BNEexp±red) used in the requirements specification becomes specific to a particular design.

Initially, we were apprehensive that this would complicate the specification and verifi-

cation signiflcantiyl As it turned out,at ieast for our high-level design, this was not the case.

We were able to define the time at which a timeout is checked for a particular VID without

too much difficulty. For a more detailed hardware design, however, it may be harder to

characterize the timeout condition as a function of the initial state, especially if the relation

between the master clock and the free running timer is more complicated than it is in our

high-level design. In that case, we may have to formulate and verify a weaker version of the

requirements specification for the timeout condition.
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5 A Scoreboard Design

Our Scoreboard design is based primarily on the flowchart and VHDL descriptions of the

Scoreboard given in Morton's thesis [9]. We started by structuring our design close to the

flowchart description, for our goal was only to construct a high-level design. The eventual

design, however, turned out to be closer to the VHDL design in its level of detail than

the flowchart because the flowchart had to be refined to obtain a fully operational design.

The Scoreboard interface corresponds closely with that of the VHDL design. Our design

implements more of the Scoreboard functionality than does the VHDL design. For example,

our design processes broadcast messages in the SERP; the flowchart and the VHDL design do

not. We implemented this feature by consulting the CSDL personnel about the requirements

for broadcast.

We constructed and specified our design using Spectool. Excluding three main blocks,

all the components used in the design are either ordinary registers or special kinds of registers.

The design is detailed enough that it can be translated into register transfer level hardware

by refining the main blocks used in the design one level further. Some of the signals on the

wires and the internal states of the components are represented using high-level data types,

such as records and natural numbers. Obtaining a hardware realization for the Scoreboard

was not one of our goals in Phase 1. Hence, we did not use hardware efficiency as the

main criterion in choosing our design decomposition. Before describing our design, we give

a summary of our hardware model.

5.1 The Hardware Design Model

A finite state controller circuit consists of a data path and a controller. The data path

is a set of interconnected components. Some of the components can be connected to in-

put ports (represented by diamonds) and output ports (represented by circles) for external

communication. All components in a class share the same set of structural and behavioral

attributes. The structural attributes include the number of input/output ports, the type of

signals expected at the ports, the icon used to denote a component in the class, etc. The

main behavioral attribute of a component is the set of actions that can be triggered by the

controller. An action, when triggered on a component, may cause a change in the internal

state and/or the state of the signals at the outputs of a component. The effect of an action is
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definedasa function of the current state and current inputs of the component. For example,

an arithmetic logicunit (ALU)canbedefinedby havinganaction for everyarithmetic/logical

operation it supports.

The controller isafinite statemachinethat gets inputs from the data path components

or from outside the circuit. A controller state transition correspondsto advancementof a

unit of discretetime (a cycle) on an implicit global clock. In every state, the controller sends

control signals to the data path that cause a set of actions to be triggered on the components.

The set Of actions triggered in a controller state is called the schedule (of actions) for that

state. In our circuit representation the coni;rol signals are not shown explicitly. A schedule

is specified by giving the symbolic names of the actions triggered by the control signals. In

addition to scheduling actions on components, a controller may send outputs outside the

circuit. These external outputs from a controller are shown explicitly in the circuit diagram.

A clock cycle may be further divided, at the user's discretion, into a finite number of

phases. A phase is the Smallest unlt Of time used in a circuit Specification. The schedule for

a state is really a chronological sequence of schedule fragments, one for every phase in the

state. A schedule fragment is defined as a function of the current controller state, phase, and

inputs. The actions in a schedule fragment associated with a state-phase pair are triggered

Simultaneously. Every action defined on a component has an associated delay, which is

measured in integral number of phases. The results of an action with delay delta triggered

in a phase phi are available in phase (phi+delta). A state transition always takes place in

the last phase of a cycle.

5.2 Informal Description

The Sc0reboard design goes through two main loopsmvoting and checking--in performing

a SERF cycle. In the voting loop, it iterates over all the valid VIDs in the system, collects

all the SERF entries belonging to the same virtual group, votes them, and stores them in

an internal voted SERF memory (YSERP). ii_aiso_checks and Seis or cIearS,'_s necessary,

timeouts for the IBNF and OBNE conditions for every virtual group in this loop.

In the checking loop, the Scoreboard cycles through the VSERP to check if there are

any VSERP entries from which a message that satisfies the message approval condition can

be generated. If and when it finds one, it enters the sending loop to send the approved
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VSERP Entry [OBN_ IBNF I src_vid
dest_vid I xclass is_simplx I Syndromes I

Figure 7: The SERP, CT, and VSERP Entries

message and waits for a cont inue signal for proceeding further in the checking loop. When it

encounters a broadcast message, it enters the broadcast loop to check if the broadcast message

can be approved and sent. If a broadcast message is pending approval from the previous

SERP cycle, the Scoreboard enters the broadcast loop from the voting loop, skipping the

checking loop entirely, because approval of a broadcast message must take precedence over

sending all other messages.

The entries in the SERP memory, SERP, are indexed by the processor identifiers (PID).

The fields of a typical SERP entry are shown in Figure 7. The VIDs, which are represented

as natural numbers (NAT) in our design, are assumed to be bounded by a maximum, max_vial,

which is treated as an unspecified constant in our specification. Not every VID may be in

use at any given time; the VIDs that are in use are said to be valid. The configuration table,

CT, has an entry for every possible VID number.

The fields of a typical CT entry are shown in Figure 7. A CT entry for a VID gives

the redundancy level, the PIDs of the member PEs belonging to the virtual group denoted

by the VID, and the offset value to be used for setting timeouts for the VID. The entry also

contains a presence field that indicates, for every NE, if the VID has a member subscribed

to the NE. An invalid VID is given a redundancy level of zero. The Scoreboard uses the

CT to fetch entries belonging to the same group before voting and uses an internal lookup

table, LKUP, to skip entries in CT that correspond to invalid VIDs. The lookup table, which

is generated during initialization by the CT_lJpdate operation, also stores the actual number

of VIDs (numvid) in the system, and performs the termination check required for the voting

and checking loops.

Figure 7 shows the fields of a typical VSERP entry. The values of most of the fields
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in the VSERP entry for a VID are the results of voting the corresponding fields from the

SERP entries belonging to the VID group. The only exceptions are for the 0BNE field, the

IBNF field, and the new fields Syndromes and src_vid. The 0BNE (or IBNF) field contains its

corresponding voted result, unless a timeout is set in the voting loop. If a timeout is set, the

field is cleared irrespective of the value of the voted result. This kind of setting eliminates

the need, outside the voting loop, to access the timeout memory to check if a timeout is set

on a VID.

The Syndromes field is a piece of information that is generated in addition to the

voted result. It indicates, for every voted field, if the actual Value of the field for a member

PE belonging to the VID group differs from or agrees with the voted result. This information

is included in the message delivered to the NE. The NE uses the syndrome information to

identify the faulty PEs and take appropriate actions.

5.3 The Scoreboard Data Path

Figure 8 shows the data path diagram of our Scoreboard design. Although the SERP and CT

are shown in the data path, they are not part of the Scoreboard design. They are included

in the design specification for convenience; we could have used instead the data lines from

the SERP and CT as inputs to the Scoreboard. The address input (coming out of the CT)

to SERP is a tuple consisting of a redundancy level number and four PIDs. The output of

the SERP is a list of SERP entries. When a read is performed on the SERP, the SERP uses

the redundancy level information in the input to output a list of entries of an appropriate

length.
7

The major component blocks of the Scoreboard are LKUP, VOTE, TN0, VSERP and VALID.

The rest of the components are multiplexers (MX and MX2), ordinary registers of different

sizes (VS, MSG, and 0BNE) and special kinds of registers (BOK and BDCST). The Scoreboard

also contains a free running timer (TIMER) that is incremented once every clock cycle; the

TIMER can also be initialized. The table in Appendix B lists all the actions, along with their

delays, defined on each of the components used in the design. Next, we describe some of the

major blocks used in the design.

LKUP implements a lookup table with some special-purpose logic. The lookup table is

used to generate the set of all valid VID numbers in the system in sequence and in increasing
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order. This table is pre-compiled and stored for a particular CT during the CT_Update

operation of the Scoreboard. The actions defined for LKUP are reset_index, next_index,

set_table, and reset_table. The only action of LKUP that is invoked during a SERP

processing cycle is next_index. Performing next_index causes the next valid VID to appear

on one of the outputs of the block (the one that is input to CT). After the largest valid

VID has been generated, next_index causes LKUP to cycle back to the smallest VID. This

action also generates another 1-bit Output (the one labeled rids'done that is routed into the

controller), which indicates whether the current VID generated was the largest valid VID in

the system. Note that rids_done can be used to check whether one has cycled through all

the valid VIDs in the system once.

The inputs to the VOTE block are the SERP entries (from SERP), the redundancy level

of the VID (from CT), and the current status of the timeout settings (from TN0) for the

OBNE and the IBNF conditions for the VID. The block has a single action vote defined on

it. Performing this action causes the following to be output: the voted result (coming out on

the bottom output of the block indicated in Figure 8) and new timeout settings (set, clear,

or retain coming out on the side output of the block indicated in Figure 8) for the IBNF and

OBNE conditions.

TN0 is a timeout memory that has an entry for every valid VID. Every entry contains

two fields, one for 0BNE and one for IBNF. Each field contains a pair of items indicating

whether a timeout has been set, and if so, the absolute time at which the timeout would

expire. The inputs to the block are the current time (from TIGER), the VID index (from

LKUP), the offset value (from CT) to be used to set the timeout for the VID, and signals giving

timeout setting instructions (from VOTE). The actions defined on TM0 are reset_tm, get, and

set. The action get outputs the current status of the timeout settings for the OBNE and

the IBNF conditions after checking for expiration; set sets the timeouts for the current VID

based on the instructions supplied at the input; and reset_tin resets every entry in TM0.

BDCST is a two-field register with the following actions: set_bp and clear_bp. One

of the fields is a 1-bit quantity, which is used to indicate if a broadcast is pending from a

previous cycle. The other field is used to save the VID number of the group that is sourcing

the broadcast message pending transmission. The action set_bp sets the VID field to the

value on the only input to the block and also sets the 1-bit field to true; clear_bp clears the

1-bit field.
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The special-purpose1-bit latch B0Kis usedto compute and store the conjunction of

the IBNF conditions of all the valid VIDs in the system. Its input is the IBNF field of the

voted result comingout of VOTE.The action and_bokstoresthe conjunction of the current

input and the current state of the block.

5.4 The Scoreboard Controller

Figure 9 shows the finite state machine implemented by the Scoreboard controller.

The ovals denote the controller states and the diamonds denote conditional branches. The

boolean expression attached with each of the diamonds is given in the table that is included

at the end of Figure 9. The boolean expressions are functions of the inputs to the controller,

which are shown in Figure 8. The special symbol (1) marks selected points of control, the

beginning of all the loops in the present case, in the controller. These marked points facilitate

the generation of some of the verification conditions needed in our proof of correctness.

In the BGN state, the controller idles, waiting for a command to execute an operation.

Upon receiving a process.mew_serp command, the controller moves to GET to begin a new

SERP cycle. The voting loop involves the states GET and VOT. The checking loop starts in

CHK. The controller enters SND state only if the current message is approved for sending. The

controller skips the checking loop entirely and enters the BROD state if a broadcast is pending

from the previous cycle (i.e., bpndng is true) and the IBNF conditions are true for all VIDs

(i.e., bok is true). BROD can also be entered from inside the checking loop if an approved

broadcast message is encountered in the current SERP cycle and the bok condition is true.

SNDB is the state in which a broadcast message is sent. Note that in both SND and SNDB the

controller idles until a continue is received.

The controller clock cycle is divided into five phases, with the last phase reserved

for advancing the controller state. Thus, in every state, the controller has four phases to

schedule actions on the data path components. The TIMER is advanced exactly once per

cycle in every state in phase 3. The complete schedule of actions performed by the controller

is given in Appendix A. In the following, we summarize the overall effect of all the actions

performed in each of the controller states.

GET: Fetch SERP entries belonging to the current VID by reading the CT and SERP in

sequence; get the OBNE and IBNF timeout status for the current VID from TM0.
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VOT: Perform vote action on VOTE (note that this action not only votes the SERP entries,

but also determines if IBNF and OBNE timeouts need to be set, retained, or cleared

for the VID and generates syndromes); set or clear, as necessary, OBNE and IBNF

timeouts in TMO; latch the voted SERP entry into VS; perform an and_bok action on

B0K with the voted OBNE; enter the voted result into VSERP; advance the LKUP index.

CHK: Fetch the next entry from the VSERP; save the source OBNE in the latch 0Bh'E for

later use; latch the message contents from the VSERP entry fetched into MSG; perform

check_validity on VALID to check the validity of the current message; fetch VSERP

entry of destination VID (with destination VID routed via the multiplexer MX); latch

the VSERP entry of the destination VID into VS; if the message is invalid, then set the

destination of message to "null"; if the current message is broadcast and valid, then,

if necessary, set the broadcast pending and source fields of BDCST.

SND: Clear the IBNF bit of the VSERP entry corresponding to the destination VID so

that no more messages will be approved for this destination (this is clone by clearing

the IBNF field in VS, which has a copy of the VSERP entry for the destination VID,

and entering the modified content of VS into VSERP).

BROD: Clear the broadcast pending field of BDCST; read VSERP at the VID contained in

the source field of BDCST, which is routed via the multiplexer MX; generate the message

and latch it into MSG.

SNDB: No action other than the default actions that are performed in every state.

5.5 Formal Design Specification

The behavior of a finite state controller circuit is uniquely determined given the following:

• The data path and controller structure.

• The controller schedule.

• A specification of the effect of the actions on every component.

The specification of a design (generated by Spectool) consists of the following parts.

The first three parts give the Caliban specification of the information listed above.
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1. Structural specification describes the structural aspects of the data path: the names

of the data path components, the external inputs and outputs of the circuit, and the

connections between components.

2. Controller specification describes the controller finite state machine.

. Component classes specification gives a description of each of the component classes

used in the data path.

. Composite behavior specification defines a set of Caliban types and functions that derive

the behavior of a circuit from the information specified in the rest of the specification.

The complete details of the Structure of a design specification can be found in [14]. In

the following, we summarize the top level of the composite behavior part of the specification.

The two main top-level functions defined by the design specification are Execute and

Output. Execute advances the state of the system across a single cycle. Output returns

the (tuple Of) external outputs produced by the circuit over the next Cycle. Output actually

returns a list of outputs, one for every phase in a cycle that has been designated as an "output

phase." The two functions are defined hierarchically in terms of several other functions, some

of which are described below.

The type STATE defines the data path state as a tuple of three components. SYSTEM_

STATE maps every component (an element of type COMP) in the data path to its LOCAL_STATE.

The type [CHANGE] is a list of update tuples that keeps a record of all the pending actions

on components, i.e., actions that have been triggered by the controller, but are yet to be

completed. This list is maintained to simulate the effect of delays on actions.

The first two fields of STATE define a snapshot in time of the data path state. The

state of a component is given by SYSTEbl..STATE unless an action is pending on the component,

in which case the state is bottom.

The third field of the tuple, INPUT_STREAM, specifies the values of the external inputs

to the circuit as a function of time. INPUT_STREAM is a function type from time (NAT) to

EXTSTATE, where EXTSTATE is a type that combines all the external inputs into a tuple.

The type LOCAL_STATE is a labeled union of the local states of all the components of

the data path (and the controller). The local state of a component is a tuple of its internal
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state and (a tuple of) its outputs. The definition of LOCAL_STATE appears in the component

classes specification.

The function update_state causes the result of all the update records on the list that

have timed out to take effect on the circuit state, The function also decrements the time out

counter of the update records that have not yet timed out by one unit of time. The function

update_state uses do_changes to accomplish the desired goal. The purposes of the rest of

the functions are summarized below.

do_phases updates the state for all the phases in a cycle.

do_phase updates the state for a single phase. The function causes (using update_state)

the pending updates that have timed out to take ef[ect;gets the current_schedule

from the controller; makes new update records (using do_actions) for all the actions

in the schedule and adds them to the state; and then advances the input stream by a

time unit.

type STATE = <<SYSTEM_STATE, [CHANGE], INPUT_STREAM>>

type SYSTEM_STATE = COMP -> LOCAL_STATE

type INPUT_STREAM = NAT -> EXTSTATE ..........

CHANGE ::= Change !COMP !NAT LOCAL_STATE

Execute :: STATE -> STATE

Execute s = do_phases 0 s

do_phases :: NAT -> STATE -> STATE

do_phases n s = update_state s , n = num_phases

do_phases (n+l) (do_phase n s)

Output :: STATE -> Output_type

Output s = generate_output 0 s

generate.output n s {n=num_phases} = []

generate.output n s {output_phase n} =

0ut(do_phase n s) : generate_output (n+l) (do_phase n s)
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generate_output n s = generate_output (n+l) (do_phase n s)

0ut s = current_outs (state_function s)(inputstream s)

IIclio: modify_rule "do_phases" count 20000

llclio: symbol do_phases never

update_state <<s,p,in>> = do_changes p <<s,[],in>>

do_phase :: NAT -> STATE -> STATE _

do_phase n <<s,p,in>> = *
!

advance_inputstream (do_actions (current_schedule s2 n) s2)

where s2 = update_state <<s,p,in>>

s)current_schedule s n = scheduler (controllerstate (controllerinput s) n

6 The Correctness Theorems

As is common in most large verification efforts, we decomposed the verification of the Score-

board design into a hierarchy of smaller and more manageable lemmas. To facilitate the

decomposition process, we introduced two additional layers of specification between the

Spectool generated specification (execute level) and the expected behavior specification (re-

quirements level) for the Scoreboard. In this section, we briefly describe the intermediate

levels and the some of the important lemmas that had to be proved to relate the levels in

the specification hierarchy. Figure 10 illustrates the specification and the lemma hierarchy i

used in the verification process. i

6.1 The Execute Level

At this level, the Scoreboard is specified by means of the function Execute, which defines a

single clock cycle behavior of the Scoreboard design, i.e., the behavior for a single transition

of the Scoreboard controller. This level of specification was described in detail in Section 5.

40



MACRO STEP LEVEL

V Q Step
1
e

rn

a

Step

1 !

_ _ I ABSABS IIVC OK Lemma i

REQUIREMENTS LEVEL

SBStep

! I

S - Step

E - Execute

Id - Identity Fn.

I - Idle

C - Check

V - Vote

"_ "'" -_ EXECUTE LEVEL

cutpoint cutpoint

SB - Send or Broadcast

S
I
e

m

m

a

C
1
e

m
m
a

Figure 10: The Lemma Hierarchy

41



6.2 The Step Level

At the next higher level, the Scoreboard is specified by the function Step, which defines the

behavior of the Scoreboard between two successive cutpoints ((_) in the controller. That

is, Step defines the behavior of the circuit for a set of "kernel" paths, which consists of

all paths between pairs of successive cutpoints (not necessarily distinct) in the controller.

The behavior for all paths that the controller would traverse during a SERP cycle can be

composed from the behavior over these kernel paths because we have placed enough cutpoints

to cut every loop in the controller.

The Scoreboard state at the step level is an abstraction of the state at the execute

level. For example, the signals on the internal wires, which are included in the state at the

execute level, are abstracted at the step level. The function ABS relates the states at the two

levels.

VC_ok_lemma formalizes the correctness relation, denoted by the box labeled VC_ok_lemma

in Figure 10, between the step and execute levels. The VC_ok_lemma states that, for each

execution path (from cutpoint to cutpoint in the control state diagram), the effect of iter-

ating over an appropriate number of Executes is equivalent (under the mapping ABS) to

performing a single Step function.

6.3 The Macro Step Level

The next higher level, called the macro step level, defines three functions that specify the

effect of the four major blocks of computation that take place during an arbitrary SERP

cycle.

1. VoteStep defines the effect of the voting loop, including the first step taken from the

idle state, i.e., the combined effect of the computation that starts from BGN, then enters

the voting loop, and proceeds all the way to the instant the Scoreboard exits the voting

loop.

2. CheckStep defines the effect of the Scoreboard computation from the instant the Score-

board is in CHK state to the next instant at which it is in one of the sending states (SND

or SNDB) or back in BGN. That is, CheckStep abstracts the loop from CHK to itself.

42



VoteStep

(bp & -bok)

_ CheckStep

SBStep

(vids_done) k,£

I - Idle
B - Brdcsting

CheckStep C - Checking

S - Sending

(isbcsO

-vials_done)

Figure 11: Computation in Macro Steps

3. SBStep defines the effect of the two sending loops in the Scoreboard in a single func-

tion. That is, it defines the effect of the Scoreboard computation from the instant the

Scoreboard is in either SND or SNDB state and the next moment that it is out of these

states.

Figure 11 shows the abstract control diagram for a SERP cycle computation in terms of the

macro step functions listed above. In the figure, the abstract controller states are labeled

I for idle, C for validity checking, S for normal sending, and B for broadcast sending. The

condition under which an arc is traversed, in the case of a multiway branch from a state, is

included as a label for the arc.

Note that every macro step function must have the same effect as executing a certain

number of Steps, where the number of Steps can be defined as a function of the Scoreboard

state to which the macro step function is applied. For example, the number of Steps that

are required to accomplish the effect of a single VoteStep is equal to the number of valid

VIDs in the system. We proved four lemmas (Lerma 2, Lemma 7, Lerama 8, and Lemma 9) to

relate the Step and macro step levels. A formal definition of each of these lemmas is given

below and the relationship that they establish is illustrated in Figure 10.

VoteStep s = VotingStep (numvidsof (ABS_ikupof s)) s

Lemma2 := (i::NAT)(n::NAT)

'iterate (Succ i) Step s' = 'VotingStep i s',

StartSerp _s' 'Succ n' & 'i <= Succ n'='True '
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Lemma7 := 'iterate (checksteps s) Step s' =

'CheckStep s', NormalLkup '(ABS_Ikupof s)'

SendStep s = Sendingstep (sendingsteps s) s

Lemma8 := 'iterate i Step sC='SendingStep i s',

'i <= (sendingsteps s)'='True'

BcstStep s = BcstingStep (bcstingsteps s) s

Lemma9 := 'iterate i Step s'='BcstingStep i s',

'i <= (bcstingsteps s)' = 'True '

Lemma 2 is stated in terms of (VotingStep i s), which is equivalent to (VoteStep

s) when i is the total number of ViDs in the system. The ]emma asserts fihat for every i less

than or equal to the number of VIDs the effect of iteration in terms of Steps is equivalent to

the effect of applying (VotingStep i). The precondition StartSerp ensures that the state

s is initialized properly to start a new SERP cycle; it also ensures that (n+l) is equal to

the number of VIDs. Our design requires that the number of VIDs in the system be at least

one.

in Lemma 7, which states a similar requirement as Lemma 2 for CheckStep, checksteps

defines the number of Steps required. The precondition NormalLkup ensures that the state

s is initialized appropriately for a proper execution of CheckStep.

Lemma 8 and Lemma 9 together state the corresponding requirement for SBStep. SBStep

is itself defined in terms of SendStep or BcstStep depending on whether the message be-

ing sent is a broadcast or not. Hence, there are two separate lemmas for SBStep. The

number of steps that have to be performed is defined by the functions sendingsteps and

bcst ingsteps, respectively.

6.4 The Requirements Specification Level

The topmost level in the hierarchy is the level at which the requirements specification (func-

tional form) was expressed. As we described in Section 4.2, the main function that spec-

ifies the Scoreboard behavior at this level is ExpBehavior. We describe the definition of
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ExpBehavior next in Section6.5. First, we describethe main lemma that we provedfor the

Scoreboard.

As we described in Section 4.2, the assertionthat completely formalizes the main

requirements(in functional form) is the MAIN_THEOREMgiven below. What we proved was

a lemma, definedbelow asMsglemma,that constitutes a substantial part of MAIN_THEOREM.

MsglemmacoversMAIN_THEOREMonly for the messagespart of the behavior, but not for the

final state part. Msglemma represents the most difficult part of MAIN_THEOREM.

MAIN_THEOREM := (StartSerp 's' 'Succ n' & ProperABS 's' & Liveness 's')

=> 'ActualBehavior s' = 'ExpBehavior s'

Msglemma := (ProperABS 's' & StartSerp 's' 'Succ n' & Liveness 's')

=> 'Msgs(ActualBehavior s)'='expected_messages s'

The macro step level was introduced to decompose the proof of the MsgLemma. MsgLemma

was proved with the help of a set of intermediate lemmas--Vlemma, Clemma, and Slemma--

one for each of the macro step functions. The relationship established by each of the in-

termediate lemmas is shown in Figure 10. An intermediate lemma associated with a macro

step function states the following: The behavior of a trace of Steps that begins in a state in

which the macro step function may be applied is the same as a trace in which an appropriate

initial segment of Steps is replaced by the corresponding macro step. The formalizations of

the intermediate lemmas are given below.

Vlemma :=

Clemma :=

Slemma :=

'Behavior(trui(Step s))' =

'Behavior (trui (VoteStep s))' , StartSerp 's'

'Behavior (trui s)' =

'Behavior (trui (CheckStep s))',

NormalLkup '(ABS_ikupof s)'

'Behavior (trui s) '=

'Mcons (ABS_msgof s)(Behavior(trui(SBStep s)))'

'is_send s'='True' & Liveness 's'

'SUCC n'
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6.5 Definition of Expected Behavior

The expected behavior consists of two things: the list of messages that are approved during

the SERP cycle and the state at the end of the SERP cycle. We will describe the definition
z

of the expectedmessages part of the behavior.

ExpBehavior s = <<expected_messages s, expected_final s>>

The expected messages are defined in two stages. First, the result of computing the

voted SERP is defined by the function (VotedSerp s) Then as a function Of the Voted

SERP and the table of valid VIDs we can define the expected messages. When there is

a broadcast pending, then there will be at most one message, and this is defined by the

function best_approved.

expected_messages s {bpendingof (hBS_bpndingof s)} = bcst_approved s

expected_messages s z exp_msgs_from_check (VotedSerp s)(ABS_ikupof s)

The function that defines the messages in terms of the voted SERP and the lookup

table is called exp_sgs_from_check since it is the list of messages that will be approved if the

scoreboard reaches the checking state. To define it, we first form the expression (all_clear

vs fn num), which is the conjunction of the IBNF bits of the VSERP entries for the valid

VIDs. This is used to determine whether a broadcast message is approved, and becomes the

bok parameter to the function checked_msgs.

exp_msgs_from_check vs <<fn,num,i>>

checked_msgs (all_clear vs fn num) vs <<fn,num,Zero>>

The function checked__sgs defines the list of approved messages as follows. The ex-

pression (message_list vserp lkup) represents the list obtained by forming (as a function

of the lookup table) the list [vl,... ,vn] of valid VIDs, then applying the voted SERP to

each vi to get its corresponding message, and then filtering out those messages that fail the

OBNE or IBNF conditions. The function sieve_dest, which is applied next, deletes any

message that has the same destination as a message earlier in the list. Finally, the function

bcst_truncate deletes all messages after the first broadcast message and also deletes the

first broadcast message if the bok is false.
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checked_msgs bok vserp ikup =

best_truncate bok (sieve_dest (message_list vserp ikup))

7 About the Verification

This section briefly describes the technique that was used to prove the correctness lemmas

described in the previous section.

7.1 Msglemma

This lemma was by far the most difficult to prove of all the main lemmas. The proof relied

on the previously proved Vlemma, Clemma, and Slemma, to allow us to view the trace of Steps

as consisting of the macro steps defined by the functions VoteStep, CheekStep, and SBStep.

In fact, since the state s is assumed to start in a CHK state, only CheckStep and SBStep will

occur. Now the proof is by induction on the length of (exp_msgs_nobp s), and proceeds by

considering the possible sequences of macro steps. There are four possibilities:

1. After performing a CheckStep, the resulting state is Idle.

2. The CheckStep leads to a Brdcsting state, after which an SBStep leads to Idle.

3. The CheekStep leads to a Sending state, after which an SBStep leads to Idle.

4. The CheckStep leads to a Sending state, after which SBStep leads back to a CHK state.

In the first three cases, we were able to show directly, by expanding the defini-

tions of CheekStep, SSStep, and exp_.msgs_nobp, that the observed messages agree with

the exp_msgs_nobp. In the fourth case, we had to appeal to our inductive hypothesis. To

do this, we must show that the length of the list, exp_msgs_nobp(SBStep(CheekStep s)),

is less than the length of (exp_msgs_nobp s). In fact we must show that the list

exp_msgs_nobp(SBStep(CheekStep s)) is the tail of (exp_msgs_nobp s), which was a ma-

jor lemma in itself, the "check to check lemma," but could be proved by expanding the

definitions of the functions involved and then invoking several general lemmas about the list

operations (map, filter, fromto, all, etc).
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7.2 Vlemma

To prove this lemma, it was sufficient to prove that applying the macro step, VoteStep,

is the same as iterating Step some number, n, times, and that for no number i < n, does

the i th iterate of Step result in an Idle or Sending state. We proved this by making a

stronger induction hypothesis, namely that the i th iterate of Step is given by the expression

VotingStep i. The function VotingStep has the property that VotingStep n = VoteStep,

when n is the number of VIDs in the state, and for any i < n the result of (VotingStep

i) is neither Idle nor Sending. Then, we proved by induction on i that 'iterate i

Step '= 'VotingStep i'

7.3 Clemma

As for the Vlemma, it was sufficient to prove that the macro step, CheckStep, is the same

as an n-fold iterate of Step for some number n and that for no number i < n, does

the i th iterate of Step result in an Idle or Sending state. Again we strengthened the

induction hypothesis, by defining functions CheckingStep i and checksteps such that

the i th iterate of Step is given by the expression CheckingStep i and (for any state s)

CheckingStep (checksteps s) s = CheckStep s, and for any i < (checksteps s) the
= , =

resultof CheckingStep i is neither Idle nor Sending. Then we proved by induction on i

that 'iterate i Step'='CheckingStep i'.

In this case, in order to derive the final Clemma, it was also necessary to prove that

the function checksteps was well defined, which was proved by induction on the difference

between the number of VIDs and the current index i.

7.4 Slemma

The proof of this lemma was similar to the proof of the Clemma, namely the functions

(SendingStep i), (BcstingStep i), sendingsteps, and bcstingsteps, were defined so

that it was possible to prove by induction on i that

I. 'iterate i Step s'='SendingStep i s

2. 'iterate i Step s'='BcstingStep i s
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The functions (sendingsteps s) and (bcstingsteps s) are defined in terms of the

least time at which a continue signal arrives from the network element. Thus they are

only well defined assuming the rest of the network element behaves as it is supposed to.

Therefore, Slemma is proved only under the Liveness assumption.

7.5 VC_ok_lemma

The VC_ok_lemma states that a certain equation must hold for each execution path, i.e., from

cutpoint to cutpoint in the controller state diagram. We proved this lemma by considering

each execution path. Spectool makes this proof easy by enumerating all the paths. Most of

our effort was spent in writing the definition of the Step function. In this effort, Spectool

and Clio were used to generate the definition of Step in a semi-automatic fashion.

8 Concluding Remarks

In conclusion, we summarize the main accomplishments of the Phase 1 effort.

1. We developed the functional specification for the Scoreboard in two forms. In the

first form, the specification was expressed as a set of constraints on the behavior of

the Scoreboard. In the second form, the expected behavior was specified as a single

function of the initial state and the inputs to the Scoreboard.

2. We developed a high-level design for the Scoreboard using Spectooh The decomposition

employed to construct the design was based on the algorithmic description and the

VHDL design of the Scoreboard given in Morton's dissertation [9].

3. We proved a main theorem that established that the actual behavior of the design was

equivalent to the expected behavior of the Scoreboard defined as a single function.

Formal verification is one of the most thorough forms of analysis that one can perform on a

design. A benevolent side-effect of such an exercise is that one gains a deeper understanding

of the problem and the design than is possible in other kinds of design analysis.

Constructing a precise abstract specification of the requirements is valuable as it

serves as a contract between CSDL and ORA. It serves as a basis for conducting an effective
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dialoguebetweenCSDL and ORA to ensurethat what weare verifying about the design is

indeed what CSDL wants. Someof the questionsthat we have posedabout the expected

functionality of the Scoreboardin Section 4.4, particularly the ones related to broadcast

messageprocessingand Scoreboardinitialization, came to light during the course of ver-

ification. We discoveredseveralinconsistenciesin our design and the specification of the

expected behavior of Scoreboard. A significant number of the designerrors were due to

improper schedulingof the actionson the componentsthat violated the delay requirements.

Most of theseerrorswere discoveredfairly early during the verification process.

Although the verified designis not the actual CSDL design,the Phase1 verification

exercisewasvaluable in severalrespects. We expect the experiencegained to be useful in

performing the secondphaseof the task. A significant part of the current proof can be

reusedin proving the actual designbecauseCSDL's detailed Scoreboarddesignis expected

to be similar to the one we verified. Sinceour proof was layered into several levels, the

structure of the proof and severalof the lemmasthat wereneededin the proof at the higher

end wereindependentof the designdetails and, hence,canbe reusedin the verification of a

new design.

A subtle error that wasdiscoveredonly late in the verification processwasa possible

inconsistencyin the manner in which messagesto invalid destinations wereprocessedby our

design. The design wasenforcing the Scoreboardrequirement that no two messagesmay

be approvedto the samedestination evenfor invalid destination VID's. The outcomewas

that if there were two or more distinct messagesthat were destined to the same invalid

destination, then only one of them, the one with the smallest sourceVID, would get sent

(of course,after modifying the destination to "null"). We had mistakenly assumedthat a

certain wayof initializing an internal table of the Scoreboardwould take careof the checking

for invalid destinations as required. We had ignored the possibility of the existenceof two

messagesdestined to identical invalid destinations.

Our planned course of action for Phase 2 is as follows. First, we must have the

CSDL team read our functional requirementsspecification to ensurethat the specification

is accurate and also adequate. The secondstep is to study and understand the actual

Scoreboarddesign. To perform this step effectively,we plan to have a member of ORA's

Scoreboardverification team spenda suitable period of time at CSDL to interact with the

CSDL engineerwho is in chargeof developingthe detailed design. The CSDL team has

decidedto build the Scoreboardon a PC board asa set of interconnectedIC blocks,where
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everyblock is anoff-the-shelfcomponent(suchasa memorydevice)or is built usingstandard

cells (suchas gate arrays and PLA's). We plan to verify the Scoreboardat the IC block

level. For this, wehaveto developa formal specificationof the logic implementedby eachof

the blocks in the design. Then, we must formally verify that the composition of the blocks

meetsthe functional requirementsspecification.
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A The Scoreboard Controller Schedule

BGN 0 = [(opin = reset) J

(opin = clear_timeouts) -> reset_tm TMO]

BGN 3 = [reset_bok BOK, reset_index LKUP, advance TIMER]

GET 0 _ [read_ct CT]

GET 2 _ [readserp SERP, get TMO]

GET 3 = [advance TIMER]

VOT 0 = [vote VOTE]

VOT 1 = [choosel_of2 MX2, set_vs VS, and_bok BOK, set TMO]

VOT 2 = [choosel MX, store VSERP]

VOT 3 = [advance TIMER, next_index LKUP]

CHK 0 = [choosel MX, read VSERP]

CHK I = [gen_msg MSG, bt_set OBNE]

CHK 2 = [check_validity VALID, choose3 MX, read VSERP]

CHK 3 = [(valid &bcst & c_obne) -> set_bp BDCST,

(-valid) -> make_null_dest MSG,

choose2_of2 MX2, set_vs VS, advance TIMER]

CHK 4 = [next_index LKUP]

SND 0 - [clear_ibnf VS]

SND i = [choose3 MX, store VSERP]

SND 3 = [advance TIMER]

BROD

BROD

BROD

BROD

0 = [clear_bp BDCST]

i = [choose2 MX, read VSERP]

2 = [gen_msg MSG]

3 = [advance TIMER]

SNDB 3 = [advance TIMER]
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B The Scoreboard Components Actions

(The delays of the actions are indicated in parantheses.)

BOK reset_bok (i), and_bok (I)

BDCST clear_bp (1), set_bp (i)

CT read_ct (I)

LKUP reset_index (i), next_index (I), set_table (I), reset_table (I)

MX choosel (0), choose2 (0), choose3 (0)

MX2 choosel_of2 (0), choose2_of2 (0)

MSG gen_msg (I), make_null_dest (i)

OBNE bt_set (1)

SERP readserp (i), writeserp (I)

TIMER reset_timer (I), advance (I)

TM0 reset_tm (1), get (1), set (1)

VALID check_validity (1)

VOTE vote (I)

VS clear_ibnf (I), set_vs (1)

VSERP store (1), read (1)

55





Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704.0188

Public reporting burden for this collection of information is emtimated to average 1 hour per response, including the time foe reviewing instructions, Narching ex;,.ting data sourem;,

gathering and maJnlalning 1he data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any olher aspect of this

collection of information, including suggestions Ior reducing this burden, to Washington Headquarters Services, Directorate for Information Oper_dions and Reports, 1215 Jefferson Davis

Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwod_ Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

May, 1992 Contractor Report
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Moving Formal Methods into Practice: Verifying the FTPP Scoreboard: Phase 1 C NAS1-18972
Results WU 505-64-10-05

6. ALI'rHOR(S)

Mandayam Srivas and Mark Bickford

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSEES)

ORA Corporation
301 Harris Dates Drive

Ithaca, NY 14850-1313

9. SPONSORING ! MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23665-5225

8. PERFORMING ORGANIZATION

REPORT NUMBER

10. SPONSORING / MONITORING

AGENCY REPORT NUMBER

NASA CR-189607

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Paul S. Miner

Task 5 Report

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Unclassified - Unlimited

Subject Category 62

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This report documents the Phase 1 results of an effort aimed at formally verifying a key hardware component, called

Scoreboard, of a Fault-Tolerant Parallel Processor (FTPP) being built at Charles Stark Draper Laboratory, Inc. (CSDL). The

Scoreboard is part of the FTPP virtual bus that guarantees reliable communication between processors in the presence of

Byzantine faults in the system. The Scoreboard implements a piece of control logic that approves and validates a message

before it can be transmitted. The goal of Phase 1 was to lay the foundation for the Scoreboard verification. A formal

specification of the functional requirements and a high-level hardware design for the Scoreboard were developed. The

hardware design was based on a preliminary Scoreboard design developed at CSDL. A main correctness theorem, from

which the functional requirements can be established as corollaries, has been proved for the Scoreboard design. The goal

of Phase 2 is to verify the final detailed design of Scoreboard. This task is being conducted as part of a NASA-sponsored

effort to explore integration of formal methods in the development cycle of current fault-tolerant architectures being built in

the aerospace industry.

14. SUBJECTTERMS Formal requirements specification, Fault-tolerant parallel computer,

Byzantine resilience, Computer-aided hardware verificati0nl Theorem prover-based
verification

17. SEC U RITY CLASSIFICATION

OF REPORT

Unclassified

NSN 7540-01-280-5500

18. SECURITY CLASSIFICATION

OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION

OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

16. PRICE CODE

20. UMITATION OF ABSTRACT

Standard Form 298 (Ray. 2-89)
Prescribed by ANSI Std. Z39-18
298-102



= _-=

i


